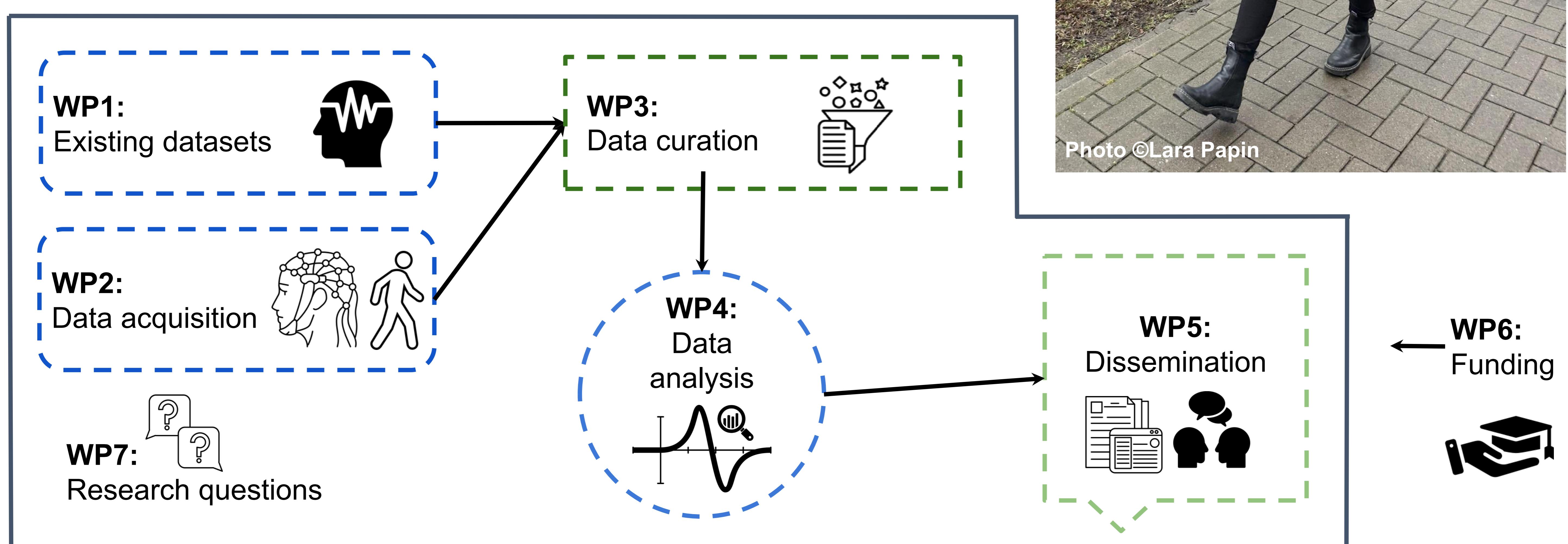


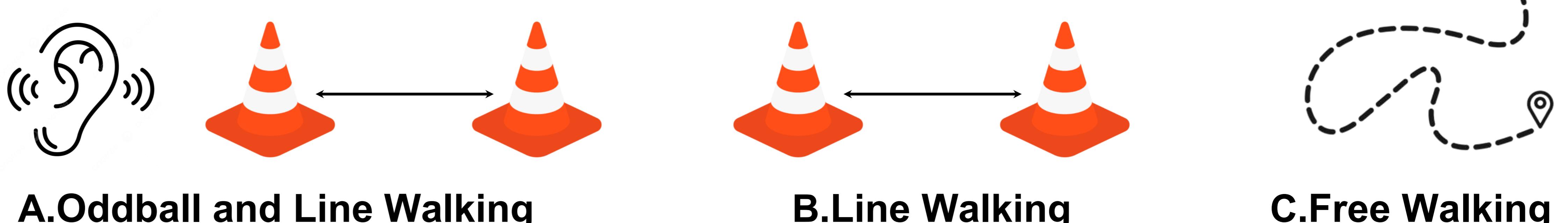
EEGManySteps: Investigating the Influence of Experimental Setups on Gait-Related EEG through Collaborative Data Collection and Analysis

Grasso-Cladera, A.^a, Reiser, J.E.^b, Klapprott, M.^c, Jeung, S.^{d,e}, Welzel, J.^f, Cao, L.^g, Cesnaite, E.^h, Fakorede, S.ⁱ,
Ladouce, S.^j, Protzak, J.^k, Shirazi, Y.^l, Wunderlich, A.^d

^aOsnabrück University, Germany; ^bLeibniz Research Centre for Working Environment and Human Factors, Germany; ^cOldenburg University, Germany; ^dTU Berlin, Germany; ^eMax-Planck Institute for Human Cognitive and Brain Sciences; ^fKiel University, Germany; ^gZhejiang University, China; ^hMünster University, Germany; ⁱUniversity of Kansas Medical Center, USA; ^jKU Leuven, Belgium; ^kEmory University, USA; ^lSCCN, USA **All authors are members of the Steering Committee of EEG ManySteps


How much do hardware and software setups shape study outcomes? Inspired by *EEGManyLabs*^[1] & *EEGManyPipelines*^[2], we aim to enhance the reproducibility of mobile EEG by analyzing walking-EEG data collected across diverse setups worldwide.

Goals


1. Identify step-specific time-frequency patterns in EEG data during walking.
2. Characterize gait-related artifacts across different systems.
3. Assess the influence of preprocessing methods on EEG results collected during walking.
4. Investigate gait-related modulation of secondary task correlates.

Project Structure

Submission Types

References

[1] Pavlov, Y. G., Adamian, N., Appelhoff, S., Arvaneh, M., Benwell, C. S., Beste, C., ... & Mushtaq, F. (2021). #EEGManyLabs: Investigating the replicability of influential EEG experiments. *cortex*, 144, 213-229.

[2] Trübutschek, D., Yang, Y. F., Gianelli, C., Cesnaite, E., Fischer, N. L., Vinding, M. C., ... & Nilsonne, G. (2024). EEGManyPipelines: a large-scale, grassroots multi-analyst study of electroencephalography analysis practices in the wild. *Journal of Cognitive Neuroscience*, 36(2), 217-224.

